Use of natural clays for the phosphates recovery from aqueous solutions

Main Article Content

Karina Peña
Tania Erreyes
Diana Guaya

Abstract

A natural clay (NC) mostly identified for quartz, muscovite y montmorillonite is modified by means of ionic exchange to the C-FeMn y C-FeMnAl forms for the phosphate adsorption from aqueous solutions. The mineralogical composition of modified clays determines the formation of new mineralogical phases which are functional groups that improves the phosphate sorption capacity. The maximum sorption capacity is reported at 34.8 mg y 18.2 mg P-PO43-/g for C-FeMn y C-FeMnAl, respectively. The phosphate adsorption is highly influence by the pH of the work solution, so some sorption mechanisms are associated which is validate by the Langmuir isotherm model and intraparticular diffusion kinetic model. First a fast adsorption phase is associated with electrostatic attraction which is followed by a second slow adsorption phase due to the chemical complexation reactions. The phosphate desorption from C-FeMn y C-FeMnAl forms was 20 % which corresponds to the phosphorous labile fraction. C-FeMn y C-FeMnAl can be used for wastewater treatment however their limited use for phosphate sorption – desorption cycles evidence they can be evaluated amendment materials for soils.

Downloads

Download data is not yet available.

Article Details

How to Cite
PeñaK., ErreyesT., & GuayaD. (2020). Use of natural clays for the phosphates recovery from aqueous solutions. AXIOMA, (22), 12-17. Retrieved from http://pucesinews.pucesi.edu.ec/index.php/axioma/article/view/593
Section
CIENCIAS NATURALES, MATEMÁTICAS Y ESTADÍSTICA
Author Biographies

Karina Peña, Universidad Técnica Particular de Loja. Instituto Nacional de Investigaciones Agropecuarias (INIAP)

Universidad Técnica Particular de Loja. Departamento: Química y Ciencias Exactas. Loja-Ecuador

Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, Departamento de Manejo de Suelos y
Aguas. Los Ríos- Ecuador

Tania Erreyes

Universidad Técnica Particular de Loja. Departamento: Química y Ciencias Exactas. Loja-Ecuador

Diana Guaya

Universidad Técnica Particular de Loja. Departamento: Química y Ciencias Exactas. Loja-Ecuador

References

Alshameri, A., Ibrahim, A., Assabri, A. M., Lei, X., Wang, H., y Yan, C. (2014). The investigation into the ammonium removal performance of Yemeni natural zeolite: Modification, ion exchange mechanism, and thermodynamics. Powder Technology, 258, 20-31. https://doi.org/https://doi.org/10.1016/j.powtec.2014.02.063
Álvarez, J., Roca, M., Valderrama, C., y Cortina, J. L. (2018). A Phosphorous Flow Analysis in Spain. Science of The Total Environment, 612, 995-1006. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.08.299
American Public Health Association (APHA), American Water Works Association (AWWA), y Water Environment Federation (WEF).(1999). Standard Methods for the Examination of Water and Wastewater 20th Edition.
Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., y Hirotsu, T. (2006). Phosphate adsorption on synthetic goethite and akaganeite. Journal of Colloid and Interface Science, 298(2), 602608. https://doi.org/10.1016/j.jcis.2005.12.054
Cumbal, L., Greenleaf, J., Leun, D., y SenGupta, A. K. (2003). Polymer supported inorganic nanoparticles: characterization and environmental applications. Reactive and Functional Polymers, 54(1), 167-180. https://doi.org/https://doi.org/10.1016/S1381-5148(02)00192-X
Foo, K. Y., y Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. https://doi.org/https://doi.org/10.1016/j.cej.2009.09.013
Gao, Y., Chen, N., Hu, W., Feng, C., Zhang, B., Ning, Q., y Xu, B. (2013). Phosphate Removal from Aqueous Solution by an Effective Clay Composite Material. Journal of Solution Chemistry, 42(4), 691704. https://doi.org/10.1007/s10953-013-9985-x
Guaya, D., Valderrama, C., Farran, A., Armijos, C., y Cortina, J. L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271, 204-213. https://doi.org/10.1016/j.cej.2015.03.003
Guaya, D., Valderrama, C., Farran, A., y Cortina, J. L. (2016). Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions. Journal of Chemical Technology and Biotechnology, 91(6), 1737-1746. https://doi.org/10.1002/jctb.4763
Guaya, D., Valderrama, C., Farran, A., y Cortina, J. L. (2017). Simultaneous nutrients (N,P) removal by using a hybrid inorganic sorbent impregnated with hydrated manganese oxide. Journal of Environmental Chemical Engineering, 5(2), 1516-1525. https://doi.org/10.1016/j.jece.2017.02.030
Haque, N., Morrison, G., Cano-Aguilera, I., y Gardea-Torresdey, J. L. (2008). Iron-modified light expanded clay aggregates for the removal of arsenic(V) from groundwater. Microchemical Journal, 88(1), 7-13. https://doi.org/https://doi.org/10.1016/j.microc.2007.08.004
eon, C.-S., Baek, K., Park, J.-K., Oh, Y.-K., y Lee, S.-D. (2009). Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 163(2), 804-808. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.07.052
iménez-Cedillo, M. J., Olguín, M. T., Fall, C., y Colín, A. (2011). Adsorption capacity of iron- or iron–manganese-modified zeolite-rich tuffs for As(III) and As(V) water pollutants. Applied Clay Science, 54(3), 206-216. https://doi.org/https://doi.org/10.1016/j.clay.2011.09.004
L , J., Liu, H., Liu, R., Zhao, X., Sun, L., y Qu, J. (2013). Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technology, 233, 146-154. https://doi.org/10.1016/j.powtec.2012.08.024
Rolle, K., Huang, W., Clark, C., y Johnson, E. (2019). Effects of nutrient load from St. Jones River on water quality and eutrophication in Lake George, Florida. Limnologica, 125687. https://doi.org/https://doi.org/10.1016/j.limno.2019.125687
Su, Y., Cui, H., Li, Q., Gao, S., y Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47(14), 5018-5026. https://doi.org/https://doi.org/10.1016/j.watres.2013.05.044
Weber, W.J. and Morris, J. C. (1963). No TitleKinetics of adsorption carbon from solutions. Journal Sanitary Engeering Division Proceedings.American Society of Civil Engineers, (89), 31-60.
Yamani, J. S., Miller, S. M., Spaulding, M. L., y Zimmerman, J. B. (2012). Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research, 46(14), 4427-4434. https://doi.org/https://doi.org/10.1016/j.watres.2012.06.004
Yuan, X., Bai, C., Xia, W., y An, J. (2014). Acid–base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus. Journal of Colloid and Interface Science, 428, 208-213. https://doi.org/https://doi.org/10.1016/j.jcis.2014.04.045
Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., y Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62-63, 101106. https://doi.org/10.1016/j.clay.2012.04.020
Zhao, D., y Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. https://doi.org/https://doi.org/10.1016/S0043-1354(97)00371-0
Zhu, J., Baig, S. A., Sheng, T., Lou, Z., Wang, Z., y Xu, X. (2015). Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. Journal of Hazardous Materials, 286, 220-228. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.01.004