Virtual laboratory for the calculation of transient phenomena in pressurewater networks by the method of characteristics
Main Article Content
Abstract
Transient hydraulic phenomena can cause great damage to pressure pipe systems intended for water transport; that is why in addition to studying these systems in stationary or permanent regime they should be analyzed in transient or elastic model, in order to anticipate mathematically the effects of water hammer, overpressure and underpressure that can destroy the pipes, either by explosion or by crushing, respectively. In the study of the elastic model, numerical and graphical methods are used, the most disclosed to analyze the evolution of the hydraulic transient in pressure systems is the method of characteristics, which evaluates two important variables (pressure and flow) through time. In this research, the method of characteristics is used for the hydraulic transient analysis. As a result of this study, a virtual tool called Hydrotransis v 1.0 is generated, it is freely executed -online- from the portal of the Virtual Laboratory of Fluids, Hydraulics and Energy Efficiency - FHEEL-V, allowing to analyze the behavior of transitory phenomena in pipes. Hydrotransis v 1.0 is composed of two modules: hydraulic transients for a simple driving line and hydraulic transients in pumping systems. It is a dynamic computer application, in which the spatio-temporal evolution of the hydraulic transient is observed graphically and numerically.
Downloads
Article Details
Con la finalidad de contar con un tipo de licencia más abierta en el espectro que ofrece Creative Commons, a partir de diciembre de 2022 desde el número 27, AXIOMA asume la Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0(CC BY-NC-SA 4.0). Tanto el sitio web como los artículos en sus diferentes formatos, reflejan esta información.
Hasta el mes de noviembre de 2022 con el número 26, la revista AXIOMA asumió una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Los artículos contenidos en cada número hasta el 26, cuentan con esta licencia y su descripción se conserva en el portal de nuestra revista.
Atribución-NoComercial-SinDerivadas
CC BY-NC-ND
AXIOMA- Revista Científica de Investigación, Docencia y Proyección Social
References
Anderson, A. (1976). Menabrea ́s note on waterhammer: 1858. Research Student, Dept. of Engrg., Marischal Coll., Univ. of Aberdeen, Aberdeen, Scotland. Journal of the Hydraulics Division,102, (1), 29-39. doi: http://dx.doi.org/10.1061/JYCEAJ.0003646
Bergant, A., Simpson, A., Vitkovsky, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, International Association of Hydraulic Research. 39 (3), 249–257
Bouaziz, M.A.; Guidara, M.A.; Schmitt, C.; Hadj-Taieb, E. & Azari, Z. (2014). Water hammer effects on a gray cast iron water network after adding pumps. Journal Engineering Failure Analysis. 44. 1-16. Recuperado de http://dx.doi.org/10.1016/j.engfailanal.2014.04.023
Carlsson, J. (2016). Water Hammer Phenomenon Analysis using the Method of Characteristics and Direct Measurements using a “stripped”Electromagnetic Flow Meter. Royal Institute of Technology: Estocolmo, Suecia.
Elaoud, S.; Hadj-Taïeb, E. (2011). Influence of pump starting times on transient flows in pipes. Journal of Nuclear Engineering and Design, 241, 3624-3631. doi:10.1016/j.nucengdes.2011.07.039
Gulbahar, N . (2016). Planning and Design Principles of Transmission Line in Water Supply Project. International Journal of Engineering Technologies,2 (1), 22-28. doi: 10.19072/ijet.75015
Hydrotransis v 1.0 (2013). Aplicación web para el cálculo de fenómenos transitorios en redes a presión para distribución de agua potable urbana por el método de las características. Laboratorio Virtual de Fluidos, Hidráulica y Eficiencia Energética - FHEEL-V. Recuperado de http://www.fheel-v.utpl.edu.ec
Izquierdo, J.; Pérez, R.; Iglesias, P.L. (2004). Mathematical models and methods in the water industry. Mathematical and computer modelling, 39, 1353-1374. doi: 10.1016/j .mcm. 2004.06.012
Kaless, G. (2016). Una nueva aproximación para la evaluación del golpe de ariete incluyendo la condición inicial de presurización de la instalación y del fluido. Ingeniería del agua, 20 (2), 59-72
Kodura, A., & Weinerowska, K. (2005). Some aspects of physical and numerical modeling of water hammer in pipelines. International Symposuim on Water Management and Hydraulic Enginering, 125-133
Liu, E.; Zhu, S.; Li, J.; Tang, P.; Yang, Y.; Wang, D. (2014). Liquid Pipeline Transient Flow Analysis. The Open Fuels & Energy Science Journal.7. 9-11.
Meniconi, S.; Brunone, B.; Ferrante, M.; Massari, C. (2014). Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve. Journal of Fluids and Structures, 45, 235-249. doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.12.013
Meniconi, S.; Brunone, B.; Ferrante, M. (2012). Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes. Journal of Fluids and Structures, 33, 44-58. doi: http://dx.doi.org/10.1016/j.jfluidstructs.2012.05.007
Pandit, S. K., Oka, Y., Shigeta, N., & Watanabe, M. (2014). Comparative efficiencies study of slot model and mouse model in pressurized pipe flow. Journal of Urban and Environmental Engineering (JUEE), 8(1).
Provenzano P. (2013). Influencia del material de la conducción en el desarrollo del golpe de ariete. Mecánica Computacional, XXXII, 1347-1361.
Riasi, A.; Nourbakhsh, A. & Raisee, M. (2013). Energy dissipation in unsteady turbulent pipe flows caused by water hammer. Journal Computers & Fluids, 73. 124-133. http://dx.doi.org/10.1016/j.compfluid.2012.12.015
Rohani, M.; Afshar, M.H. (2010). Simulation of transient flow caused by pump failure: Point-Implicit Method of Characteristics. Journal of Annals of Nuclear Energy, 37. 1742-1750. doi:10.1016/j.anucene.2010.07.004
Sadafi, M.; Riasi, A.; Ahmad Nourbakhsh, S. (2012). Cavitating flow during water hammer using a generalized interface vaporous cavitation model. Journal of Fluids and Structures. doi: http://dx.doi.org/10.1016/j.jfluidstructs.2012.05.014
Sánchez-Barra, A. J., Nicolás-López, R., Valdiviezo-Mijangos, O. C., & Camacho-Galván, A. (2016). Dynamic modeling of managed pressure drilling applying transient Godunov scheme. Journal of Petroleum Exploration and Production Technology, 6 (2), 169-176.
Stokes, Y. M., Miller, A., & Hocking, G. (2016). Pressure drop in pipelines due to pump trip event. ANZIAM Journal,57, 163-204.
Tijsseling, A. & Anderson, A. (2007). Johannes von Kries and the History of Water Hammer. J. Hydraul. Eng., 133 (1), 1–8
Van Pham, T.; Georges, D. & Besançon, G. (2014). Predictive Control With Guaranteed Stability for Water Hammer Equations. IEEE Transactions on automatic control, 59 (2) pp. 465-470. doi: 10.1109/TAC.2013.2272171
White FM. (2011). Fluid Mechanics, 7th edn. McGraw-Hill Higher Education, New York - USA.
Wylie, E.B.; Streeter; Suo, Ls. (1993). Fluid Transient in Systems. Prentice-Hall, Englewood Cliffs.