Study of the technologies for the treatment of the aqueous effluents generated by a cement production plant

Main Article Content

Hugo Calderón
Ronald Márquez
Leonardo Rennola

Abstract

Dry cement production industries in Ecuador are sources of environmental contamination, and in particular, the wastewater produced is not previously treated before being disposed of in water bodies. In this work, a study of wastewater treatment systems technologies for the cement industry was carried out. Sources of contaminants, composition and flows were taken from a real cement plant in Ecuador. Based on this information and on the liquid effluent matter balance, it was determined that the pollutants that predominate in the wastewater generated are suspended solids, dissolved solids, fats and oils; and the most important variables are pH, alkalinity and the high temperatures of the process. According to these properties and in the study of the technologies for their removal, different process alternatives were selected to treat the wastewater generated and to comply with environ-mental regulations TULSMA (Unified Text Secondary Legislation, Environment of Ecuador). The material balances with the selected technologies were applied to different treatment schemes with simple technologies and the combination of them, which provide different efficiencies. Cost analyzes were performed for each treatment scheme, finding that all technologies are applicable, as long as the water was treated until the sedimentation process. However, the treatment of residual water by electrodialysis, reverse osmosis or vaporization is not feasible due to its high investment and maintenance costs.

Downloads

Download data is not yet available.

Article Details

How to Cite
CalderónH., MárquezR., & RennolaL. (2018). Study of the technologies for the treatment of the aqueous effluents generated by a cement production plant. AXIOMA, (17), 54-68. Retrieved from https://pucesinews.pucesi.edu.ec/index.php/axioma/article/view/509
Section
DOCENCIA

References

Ahmed, C., Kumar, P. y Gajalakshmi, G. (2008). Total dissolved solids removal by electrochemical ion exchange (EIX) process, Electrochimica Acta, 54, 474–483.
Ang, W.L., Nordin, D., Mohammad, A.W. Benamor, A. y Hilal, N. (2017). Effect of membrane performance including fouling on cost optimization in brackish water desalination process, Chemical Engineering Research and Design, 117, 401-413
Arar, Ö., Yüksel, Ü., Kabay, N. y Yüksel, M. (2014). Various applications of electrodeionization (EDI) method for water treatment-A short review, June, 342
Calderón, H. (2014). Datos de contaminantes gaseosos y acuosos en la planta de cemento, Cemento Chimborazo C.A. Ecuador
Cembureau (1997). Best Available Techniques for the Cement Industry. The European Cement Association. Brussels
Conway, R. y Ross, R. (1980). Handbook of industrial waste disposal. New York: Van Nostrand Reinhold. 1-24
Deolalkar, S. (2009). Handbook for designing cement plants. EEUU: CRC Press.
U.S. Environmental Protection Agency (1974). Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Cement Manufacturing. Point Source Category
De Paula, H., De Oliveira Ilha, M., y Andrade, L. (2014). Concrete plant wastewater treatment process by coagulation combining aluminum sulfate and Moringa oleifera powder.Journal of cleaner production, 76, 125-130.
Duda, W. H. (1977). Manual tecnológico del Cemento. Barcelona: Reverte.
Freeda, D., k. Arunkumar, K. y Sivakumar, S.R. (2005) Physico-chemical analysis of waste water from cement units, Journal of Industrial Pollution Control, 21 (2), 371 – 374.
Fierro, José A. (2016). Estudio de impacto ambiental complementario y plan de manejo ambiental de la unión cementera nacional planta Chimborazo. Recuperado de http://www.cementochimborazo.com/Archivos/EsIA%20Complementario%20UCEM%20Planta%20Chimborazo.pdf
Gavaskar, A., Cumming, L. (2001). Cost Evaluation Strategies for Technologies Tested Under the Environmental Technology. Verification Program. EPA/600/R-99/100.
Hedayatipour, M., Jaafarzadeh, N. y Ahmadmoazzam, M. (2017). Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration, Journal of Environmental Management 203(Pt 1), 151-156
Hydromantis, Inc. (2017). CapdetWorks (Versión 3.0-Gratuita) [Software]Recuperado de http://www.hydromantis.com/CapdetWorks.html
Hydromantis, Inc. (2001). Wastewater Design and Costing at your fingertips... Software for the preliminary design and costing of wastewater treatment systems. Recuperado dehttp://www.hydrosoft.co.kr/download.php?bo_table=tech&idx=204&file=1
International Finance Corporation (IFC), (2007). World Bank Group, Environmental, Health, and Safety Guidelines for Cement and Lime Manufacturing. Recuperado de http://www.ifc.org/wps/wcm/connect/f74848804951d04eb75cb719583b6d16/Final+-+Cement+and+Lime+Manufacturing.pdf?MOD=AJPERES
Kohlhaas B. (1983). Cement Engineers’ Handbook. Alemania: Bauverlag.
Marceau, M., Nisbet, M. y Van Geem, M. (2006). Life cycle inventory of portland cement manufacture (No. PCA R&D Serial No. 2095b). Skokie, IL, EEUU: Portland Cement Association.
Ministerio Del Ambiente República del Ecuador (2002). Texto unificado de la legislación ambiental secundaria. Legislación Codificada. Corporación de Estudios y Publicaciones. Recuperado de http://faolex.fao.org/docs/pdf/ecu112182.pdf
Nkwonta, O. y Ochieng,G. (2010). Total Dissolved Solids Removal in Wastewater Using Roughing Filters, Chemical Sciences Journal, 2010: CSJ-6
Peavy, H., Donald. E. Rowe y Tchobanoglous (1985). Water quality: Definition, Charecteristics, and Perspectives, Chapter 2 in Environmental Engineering. EEUU: McGraw Hill
Ranade, V. y Bhandari, V. (2014). Industrial wastewater treatment, recycling and reuse. UK: Butterworth-Heinemann
Saleha, M., El Enanyb, G., Elzaharc, M. y Elshikhipy, M. (2014). Use of Alum for Removal of Total dissolved Solids and Total Iron in High Rate Activated Sludge System, International Journal of Environmental Engineering Science and Technology Research, 2 (3), 1 – 12.
Sasan, K., Brady, P., Krumhansl, J. y Nenoff, T. (2017). Removal of dissolved silica from industrial waters using inorganic ion exchangers, Journal of Water Process Engineering, 17,117-123.
Sealey, B., Phillips, P., y Hill, G. (2001). Waste management issues for the UK ready-mixed concrete industry. Resources, Conservation and Recycling, 32(3), 321-331.
Señas, L., Maiza, P., Marfil, S. y Valea, J. (2003). Impacto ambiental producido por morteros cementicios con polvos de acería. Ciencia e Ingeniería, 24 (3), 47-53.
Setiawan, L., Shi, L. y Wang, R. (2014). Dual layer composite nanofiltration hollow fiber membranes for low-pressure water softening, Polymer, 55 (6), 1367-1374.
Sharma, K., Jain, U. y Singhal, A. (2013). Treatment of waste generated from cement industry and their treatment-a review. Recuperado de http://dl.lib.mrt.ac.lk/handle/123/8889
Sivakumar, M., Ramezanianpour, M. y O’Halloran, G. (2015). Brackish water treatment and reuse using vacuum membrane distillation system, Water Science & Technology Water Supply, 15 (2), 362-369.
Tiwari, O., Pradhan M. y Nandy, T. (2016). Treatment of mining-influenced water at Malanjkhand copper mine, Desalination and water treatment 57(52),1-10.
Wang, L. (2004). Handbook of environmental engineering. EEUU: Humana Press.
Zacerkowny, O. (2007), Membrane technology’s 25 year evolution, Filtration & Separation, 44(9), 32-34