Mathematical model approximation for corn biomass (zea mays l.) production with and withoutassociation to a legume

Main Article Content

José Valdemar Andrade Cadena
Luz Marina Rodríguez Cisneros
María Rosa Mosquera Lozada
Jorge Arroba Rimassa

Abstract

This research is aimed at doing an approximation to a mathematical model creation to know the growth dynamics of local varieties of corn, cultivated in association or not with a legume in the agro-ecological conditions of Imbabura Province. The model development started with the corn planting at different times of the year (2015 and 2016) in the Experimental Farm at the “Pontificia Universidad Católica del Ecuador” located in Ibarra; for this, a randomized complete blocks design was used in A x B factorial arrangement. After the statistical analysis, differences were established among the sowing seasons, but not for the varieties nor the association with the legume; that is why, a preliminary model was established for the corn cultivation in similar agro-ecological zones. The conclusion was that a minimum relative humidity increment of the air influences directly on the biomass yield of the corn grown in the conditions of Ibarra City.

Downloads

Download data is not yet available.

Article Details

How to Cite
Andrade CadenaJ. V., Rodríguez CisnerosL. M., Mosquera LozadaM. R., & Arroba RimassaJ. (2019). Mathematical model approximation for corn biomass (zea mays l.) production with and withoutassociation to a legume. AXIOMA, (20), 65-76. Retrieved from https://pucesinews.pucesi.edu.ec/index.php/axioma/article/view/561
Section
INVESTIGACIÓN
Author Biographies

José Valdemar Andrade Cadena, Pontificia Universidad Católica del Ecuador Sede Ibarra

Pontificia Universidad Católica del Ecuador sede Ibarra, Escuela de Ciencias Agrícolas y Ambientales, Ibarra, Ecuador

Luz Marina Rodríguez Cisneros, Pontificia Universidad Católica del Ecuador Sede Ibarra

Pontificia Universidad Católica del Ecuador sede Ibarra, Escuela de Ciencias Agrícolas y Ambientales, Ibarra, Ecuador

References

Ahmadi, S. Mosallaeepour, E., Akbar Kamgar-Haghighi, A., Sepaskhah, A. R. (2015). Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resour Manage, 29, 2837–2853. https://doi.org/10.1007/s11269-015-0973-3
Bhattarai, M., Secchi, S., Schoof, J. (2017). Projecting corn and soybeans yields under climate change in a Corn Belt watershed. Agricultural Systems, 152, 90–99. https://doi.org/10.1016/j.agsy.2016.12.013
Bracco, M., Cascales, J., Hernández, J., Poggio, L., Gottlieb, A. M., Lia, V. V., (2016). Dissecting maize diversity in lowland South America: genetic structure and geographic distribution models. BMC Plant Biology, 16(1), 186. https://doi.org/10.1186/s12870-016-0874-5
Candelaria, B., Ruíz, O., Gallardo, F., Pérez, P., Martínez, A., Vargas, L. (2011). Aplicación de modelos de simulación en el estudio y planificación de la agricultura, una revisión. Tropical and Subtropical Agroecosystems (Vol. 14). Recuperado de: www.scielo.org.mx/pdf/tsa/v14n3/v14n3a4.pdf
Caselles, A. (2008). Modelización y Simulación de Sistemas Complejos. Publicacions de la Universitat de València.
Cervantes, L. (2015). Modelización matemática Principios y aplicaciones (Primera ed). Mexico: Benemérita Universidad Autónoma de Puebla. https://doi.org/10.6084/M9.FIGSHARE.2061504
FIRA. (2016). Maíz 2016. Mexico . Recuperado de : https://www.gob.mx/cms/uploads/attachment/file/200637/Panorama_Agroalimentario_Ma_z_2016.pdf
Flores, H.; Ojeda, W.;Flores, H.;Sifuentes, E.;Mejía, E. (2013). Simulación del rendimiento de maíz (Zea mays L.) En el norte de sinaloa usando el modelo aquacrop. Agrociencia, 47, 347–359. Recuperado de:http://www.scielo.org.mx/pdf/agro/v47n4/v47n4a4.pdf
Hernández, C., Martínez, J., Calvete, H. (2011). Modelos para la simulación dinámica del Crecimiento y desarrollo de pastos. Pastos, 41 (2)(January), 127–162.
Hernández, N., Soto, F., Caballero, A. (2009). Modelos de simulación de cultivos: Características y usos. Cultivos Tropicales, 30(1), 73–82. https://doi.org/10.13140/RG.2.1.3356.1207
INIAP. (2003). Catálogo de Recursos Genéticos de Maíces de Altura Ecuatorianos. (Carlos Yánez G.;José Luis Zambrano M.;Marlon Caicedo V.; Victor H. Sánchez A.; Jorge Heredia, Ed.). Quito Ecuador: Instit. Recuperado de: http://repositorio.iniap.gob.ec/bitstream/handle/41000/43/iniapsc201.pdf?sequence=1&isAllowed=y
Intriago, R., Gortaire Amézcua, R., Bravo, E., O’connell, C. (2017). Agroecology in Ecuador: historical processes, achievements, and challenges. Agroecology and Sustainable Food Systems, 41(3–4), 311–328. https://doi.org/10.1080/21683565.2017.1284174
Luedeling, E., Smethurst, P. J., Baudron, F., Bayala, J., Huth, N. I., van Noordwijk, M.,Ong, C. Mulia, R., Lusiana, B. Muthuri, C., Sinclair, F. L. (2016). Field-scale modeling of tree-crop interactions: Challenges and development needs. Agricultural Systems, 142, 51–69. https://doi.org/10.1016/j.agsy.2015.11.005
Marín-González, O., Parsons, D., Arnes-Prieto, E., Díaz-Ambrona, C. G. H. (2018). Building and evaluation of a dynamic model for assessing impact of smallholder endowments on food security in agricultural systems in highland areas of central America (SASHACA). Agricultural Systems, 164(May), 152–164. https://Overman A.; Scholtz R. 2018.02.005
Overman, A., Scholtz III, R. (2002). Mathematical models of crop growth and yield. CRC Press. New York. Recuperado de: https://doi.org/10.2135/ cropsci2003.1145
Overman, A., Scholtz III, R. (2004). Model Analysis for Growth Response of Corn Model Analysis for Growth Response of Corn. Journal of Plant Nutrition, 27(5), 885–906. https://doi.org/10.1081/PLN-120030677
Overman, A., Scholtz III, R. (2011). Model of yield response of corn to plant population and absorption of solar energy. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016117
Pfister, F., Bader, H.-P., Scheidegger, R., y Baccini, P. (2005). Dynamic modelling of resource management for farming systems. Agricultural Systems, 86(1), 1–28. https://doi.org/10.1016/j.agsy.2004.08.001
Pirasteh-Anosheh, H., Emam, Y., y Pessarakli, M. (2013). Changes in Endogenous Hormonal Status in Corn (Zea Mays) Hybrids Under Drought Stress. Journal of Plant Nutrition, 36(11), 1695–1707. https://doi.org/10.1080/01904167.2013.810246
Recalde, E. (2016). Anuario Agroclimático años 2009-2015. In Ponticia Universidad Católica del Ecuador sede Ibarra; Consejo de Publicaciones de la Universidad de los Andes Venezuela (Ed.) (Primera, p. 500). Mérida, Venezuela,2016: Gráficas el Portatítulo Mérida, Venezuela,2016.
Santana, F., Granillo, R., Espinoza, F., Aguilar, J., y Ortega, J. (2018). Caracterización de la cadena de valor del maíz. Ingenio y Conciencia Boletín Científico de La Escuela Superior de Cd. Sahagún, 5(9)
Steduto, P. (2003). Biomass water-productivity comparing the growth-engines of crop models. FAO Expert Meeting on Crop Water Productivity Under Deficient Water Supply, 26–28.
Sumba, L. (2014). Producción Histórica de Maíz Duro Seco. Magap, 15.
Tapia, C. (2015). Identificación de áreas prioritarias para la conservación de razas de maíz en la sierra de ecuador. Memoria. Universidad Politécnica de Madrid. Retrieved from http://oa.upm.es/35522/1/CESAR_GUILLERMO_TAPIA_BASTIDAS.pdf
van der Werf, W., Keesman, K., Burgess, P., Graves, A., Pilbeam, D., Incoll, L., Metselaar, k., Mayus, M., Stappers, R., Kevlen., Palma, T., Dupraz, C. (2007). Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering, 29(4), 419–433. https://doi.org/10.1016/j.ecoleng.2006.09.017
Wang, R., Bowling, L. C., y Cherkauer, K. A. (2016). Estimation of the effects of climate variability on crop yield in the Midwest USA. Agricultural and Forest Meteorology, 216, 141–156. https://doi.org/10.1016/j.agrformet.2015.10.001