Dispositivo IoT para prevenir la violencia de género usando TinyML
Main Article Content
Abstract
The study is framed within the development of a solution based on the Internet of Things (IoT) and machine learning to prevent and detect dangerous situations related to Gender Based Violence (GBV). The goal is to provide a useful and accessible tool for women at risk, thus contributing to the prevention and reduction of GBV.
The problem addressed by the study is gender-based violence, an issue of great social and humanitarian relevance. It seeks to use digital technologies and machine learning to detect words associated with dangerous situations and prevent GBV in real time.
To address the problem, a public data set created by Microsoft containing audio samples of different words, including words associated with dangerous situations such as "yes" and "no", as well as other words and static noise, is used.
Audio data in WAV format is used, divided into one-second windows with a sampling rate of 16000 Hz. A homogeneous data window with a duration of one second is selected and the frequency cepstral coefficient (MFCC) is used to highlight the human voice and reduce background noise.
The developed model showed good overall performance, with an average efficiency of 91.3% in the training set and 85.83% in the evaluation set. High accuracy was obtained in the detection of words associated with danger situations, such as "yes" and "no". It is recognized that technology has a significant role to play in addressing GBV, but it also emphasizes the need for a commitment from society and governments to achieve lasting and significant change in eradicating this problem worldwide
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Con la finalidad de contar con un tipo de licencia más abierta en el espectro que ofrece Creative Commons, a partir de diciembre de 2022 desde el número 27, AXIOMA asume la Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0(CC BY-NC-SA 4.0). Tanto el sitio web como los artículos en sus diferentes formatos, reflejan esta información.
Hasta el mes de noviembre de 2022 con el número 26, la revista AXIOMA asumió una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Los artículos contenidos en cada número hasta el 26, cuentan con esta licencia y su descripción se conserva en el portal de nuestra revista.
Atribución-NoComercial-SinDerivadas
CC BY-NC-ND
AXIOMA- Revista Científica de Investigación, Docencia y Proyección Social
References
Chang, H. J., Lee, H. Y., & Lee, L. S. (2021). Towards lifelong learning of end-to-end ASR. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2, 1306–1310. https://doi.org/10.21437/INTERSPEECH.2021-563
Chang, S., Li, B., Rybach, D. J., Li, W., He, Y. (Ryan), Sainath, T. N., & Strohman, T. D. (2020). Low Latency Speech Recognition using End-to-End Prefetching. https://research.google/pubs/pub49622/
Enaifoghe, A., Dlelana, M., Abosede Durokifa, A., & P. Dlamini, N. (2021). The Prevalence of Gender-Based Violence against Women in South Africa : A Call for Action. African Journal of Gender, Society and Development (Formerly Journal of Gender, Information and Development in Africa), 10(1), 117–146. https://doi.org/10.31920/2634-3622/2021/V10N1A6
Guo, J. (2022). Deep learning approach to text analysis for human emotion detection from big data. Journal of Intelligent Systems, 31(1), 113–126. https://doi.org/10.1515/JISYS-2022-0001/MACHINEREADABLECITATION/RIS
John, N., Roy, C., Mwangi, M., Raval, N., & McGovern, T. (2021). COVID-19 and gender-based violence (GBV): hard-to-reach women and girls, services, and programmes in Kenya. Https://Doi.Org/10.1080/13552074.2021.1885219, 29(1), 55–71. https://doi.org/10.1080/13552074.2021.1885219
Kamalraj, R., Neelakandan, S., Ranjith Kumar, M., Chandra Shekhar Rao, V., Anand, R., & Singh, H. (2021). Interpretable filter based convolutional neural network (IF-CNN) for glucose prediction and classification using PD-SS algorithm. Measurement, 183, 109804. https://doi.org/10.1016/J.MEASUREMENT.2021.109804
Lo, T. H., Weng, S. Y., Chang, H. J., & Chen, B. (2020). An Effective End-to-End Modeling Approach for Mispronunciation Detection. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020-October, 3027–3031. https://doi.org/10.21437/Interspeech.2020-1605
Miranda Calero, J. A., Rituerto-Gonzalez, E., Luis-Mingueza, C., Canabal, M. F., Barcenas, A. R., Lanza-Gutierrez, J. M., Pelaez-Moreno, C., & Lopez-Ongil, C. (2022). Bindi: Affective Internet of Things to Combat Gender-Based Violence. IEEE Internet of Things Journal, 9(21), 21174–21193. https://doi.org/10.1109/JIOT.2022.3177256
Mishra, S., & Tyagi, A. K. (2022). The Role of Machine Learning Techniques in Internet of Things-Based Cloud Applications. Internet of Things, 105–135. https://doi.org/10.1007/978-3-030-87059-1_4/COVER
Mrozek, D., Kwaśnicki, S., Sunderam, V., Małysiak-Mrozek, B., Tokarz, K., & Kozielski, S. (2021). Comparison of Speech Recognition and Natural Language Understanding Frameworks for Detection of Dangers with Smart Wearables. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12745 LNCS, 471–484. https://doi.org/10.1007/978-3-030-77970-2_36/COVER
Oh, S., Shi, Y., del Valle, J., Salev, P., Lu, Y., Huang, Z., Kalcheim, Y., Schuller, I. K., & Kuzum, D. (2021). Energy-efficient Mott activation neuron for full-hardware implementation of neural networks. Nature Nanotechnology 2021 16:6, 16(6), 680–687. https://doi.org/10.1038/s41565-021-00874-8
Rituerto-González, E., Mínguez-Sánchez, A., Gallardo-Antolín, A., & Peláez-Moreno, C. (2019). Data Augmentation for Speaker Identification under Stress Conditions to Combat Gender-Based Violence. Applied Sciences 2019, Vol. 9, Page 2298, 9(11), 2298. https://doi.org/10.3390/APP9112298
Wang, D., Wang, X., & Lv, S. (2019). An Overview of End-to-End Automatic Speech Recognition. Symmetry 2019, Vol. 11, Page 1018, 11(8), 1018. https://doi.org/10.3390/SYM11081018
Wang, S., Yang, Y., Wu, Z., Qian, Y., & Yu, K. (2020). Data Augmentation Using Deep Generative Models for Embedding Based Speaker Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 2598–2609. https://doi.org/10.1109/TASLP.2020.3016498
Zhang, Q., Wang, D., Zhao, R., Yu, Y., & Shen, J. (2021). Sensing to Hear. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3). https://doi.org/10.1145/3478093
Zhang, S., Zhang, S., Huang, T., & Gao, W. (2018). Speech Emotion Recognition Using Deep Convolutional Neural Network and Discriminant Temporal Pyramid Matching. IEEE Transactions on Multimedia, 20(6), 1576–1590. https://doi.org/10.1109/TMM.2017.2766843