Análisis de ruido con series de tiempo de la Red GNSS de monitoreo continuo del Ecuador (REGME)
Main Article Content
Abstract
The research examines the time series of the Continuous GNSS Monitoring Network of Ecuador (REGME) to identify the type of noise present. Data from the 52 REGME network stations were used, obtained from the Geodetic Reference System for the Americas (SIRGAS) portal. Following an initial analysis of data duration, 16 viable stations for the study were identified, discarding the rest due to insufficient or anomalous data. These selected data were refined to remove outliers and fill in missing values. Subsequently, a linear decomposition analysis was applied to the time series to calculate trends, seasonalities, and particularly, noise, using Fourier transforms. It was concluded that none of the stations exhibited white noise, with pink or flicker noise being common in most, typical of continuous monitoring stations. However, some stations, such as GZEC, and SIEC, exhibited a type of red noise or random walk, with spectral indices close to -2, attributed to monument stability or the type of soil where the stations are embedded.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Con la finalidad de contar con un tipo de licencia más abierta en el espectro que ofrece Creative Commons, a partir de diciembre de 2022 desde el número 27, AXIOMA asume la Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0(CC BY-NC-SA 4.0). Tanto el sitio web como los artículos en sus diferentes formatos, reflejan esta información.
Hasta el mes de noviembre de 2022 con el número 26, la revista AXIOMA asumió una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Los artículos contenidos en cada número hasta el 26, cuentan con esta licencia y su descripción se conserva en el portal de nuestra revista.
Atribución-NoComercial-SinDerivadas
CC BY-NC-ND
AXIOMA- Revista Científica de Investigación, Docencia y Proyección Social
References
Agnew, D. C. (1992). The time-domain behavior of power-law noises. Geophysical Research Letters, 19(4), Article 4. https://doi.org/10.1029/91GL02832
Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: An improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457-473. https://doi.org/10.1007/s00190-011-0444-4
Amiri-Simkooei, A. R., Tiberius, C. C. J. M., & Teunissen, P. J. G. (2007). Assessment of noise in GPS coordinate time series: Methodology and results. Journal of Geophysical Research: Solid Earth, 112(B7), Article B7. https://doi.org/10.1029/2006JB004913
Ao, M., Wang, X., Sun, Y., Wang, F., Zhang, H., Wei, L., Liu, S., & Yang, D. (2023). Large-Scale Land Deformation Monitoring over Southern California with Multi-Path SAR Data. Remote Sensing, 15(1), Article 1. https://doi.org/10.3390/rs15010143
Benoist, C., Collilieux, X., Rebischung, P., Altamimi, Z., Jamet, O., Métivier, L., Chanard, K., & Bel, L. (2020). Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities. Journal of Geodynamics, 135, 101693. https://doi.org/10.1016/j.jog.2020.101693
Bhardwaj, A. (2020). Terrestrial and Satellite-Based Positioning and Navigation Systems—A Review with a Regional and Global Perspective. Engineering Proceedings, 2(1), Article 1. https://doi.org/10.3390/ecsa-7-08262
Dicker, L. H. (2012). Residual variance and the signal-to-noise ratio in high-dimensional linear models (arXiv:1209.0012; Número arXiv:1209.0012). arXiv. http://arxiv.org/abs/1209.0012
Dudek, G. (2023). STD: A Seasonal-Trend-Dispersion Decomposition of Time Series. IEEE Transactions on Knowledge and Data Engineering, 35(10), Article 10. https://doi.org/10.1109/TKDE.2023.3268125
ITRF. (2023). ITRF | Homepage [Https://itrf.ign.fr/en/homepage]. https://itrf.ign.fr/en/homepage. https://itrf.ign.fr/en/homepage
Jin, S., Wang, Q., & Dardanelli, G. (2022). A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sensing, 14(16), Article 16. https://doi.org/10.3390/rs14163930
Kaczmarek, A., & Kontny, B. (2018). Identification of the Noise Model in the Time Series of GNSS Stations Coordinates Using Wavelet Analysis. Remote Sensing, 10(10), Article 10. https://doi.org/10.3390/rs10101611
Leiva, C. (2007, junio). SIRGAS - ECUADOR. https://www.sirgas.org/fileadmin/docs/Boletines/Bol12/14_Actividades_SIRGAS_en_Ecuador_Leiva.pdf
Li, Z., Lu, T., Yu, K., & Wang, J. (2023). Interpolation of GNSS Position Time Series Using GBDT, XGBoost, and RF Machine Learning Algorithms and Models Error Analysis. Remote Sensing, 15(18), Article 18. https://doi.org/10.3390/rs15184374
Luna Ludeña, M. (2017a). Contribución a la definición de un modelo de velocidades de la corteza terrestre para Ecuador a partir de datos GNSS [PhD Thesis, Universidad Politécnica de Madrid]. https://doi.org/10.20868/UPM.thesis.48790
Luna Ludeña, M. (2017b). Contribución a la definición de un modelo de velocidades de la corteza terrestre para Ecuador a partir de datos GNSS [PhD Thesis, Universidad Politécnica de Madrid]. https://doi.org/10.20868/UPM.thesis.48790
Mataija, M., Pogarčić, M., & Pogarčić, I. (2014). Helmert Transformation of Reference Coordinating Systems for Geodesic Purposes in Local Frames. Procedia Engineering, 69, 168-176. https://doi.org/10.1016/j.proeng.2014.02.217
TM-2555.pdf. (s. f.).
Tran, D. T., Nocquet, J.-M., Luong, N. D., & Nguyen, D. H. (2023). Determination of Helmert transformation parameters for continuous GNSS networks: A case study of the Géoazur GNSS network. Geo-spatial Information Science, 26(1), Article 1. https://doi.org/10.1080/10095020.2022.2138569
Wang, W., Zhao, B., Wang, Q., & Yang, S. (2012). Noise analysis of continuous GPS coordinate time series for CMONOC. Advances in space research, 49(5), Article 5.
Ward, L. M., & Greenwood, P. E. (2007). 1/f noise. Scholarpedia, 2(12), 1537. https://doi.org/10.4249/scholarpedia.1537
Zamora, J. M., Gutierrez, S. B., Á, & Colderon, lvaro A. (2021). Parametros de transformacion entre los marcos geodesicos CR05 y CR-SIRGAS contemplando diferentes soluciones ITRF/Transformation parameters between the CR05 and CR-SIRGAS geodetic frames contemplating different ITRF solutions. Ingeniería, 31(1), Article 1.
Zhang, Q., Niu, X., Chen, Q., Zhang, H., & Shi, C. (2013). Using Allan variance to evaluate the relative accuracy on different time scales of GNSS/INS systems. Measurement Science and Technology, 24(8), Article 8. https://doi.org/10.1088/0957-0233/24/8/085006
Zhang, Z., Li, B., Shen, Y., & Yang, L. (2017). A noise analysis method for GNSS signals of a standalone receiver. Acta Geodaetica et Geophysica, 52(3), Article 3. https://doi.org/10.1007/s40328-016-0189-x